oil

Off-highway Oil Pump Performance Testing

Off-highway Oil Pump Performance Testing

ATA was selected by a new client to build a turn-key Oil Pump ECT system to benchmark the performance of existing and future pump models. The client was a premier international manufacturer of powertrain automotive components.

Off-highway Oil Pump Durability Testing

Industrial Durability Proving Ground.

OUTSOURCE YOUR COMPONENT TESTING TO US!   Whether you are seeking specific testing expertise for a new product, or looking for additional test capacity, we are ready to support you.   ATA Lab™  consists of our latest  systems , standards and technology. Leading test methods include   aeration testing   and   durability & performance testing   strategies.    Click here   to learn more.

OUTSOURCE YOUR COMPONENT TESTING TO US!

Whether you are seeking specific testing expertise for a new product, or looking for additional test capacity, we are ready to support you.

ATA Lab™ consists of our latest systems, standards and technology. Leading test methods include aeration testing and durability & performance testing strategies.

Click here to learn more.

41AG1BNHNtL._SX355_.jpg

ATA has proven to be successful in providing industrial focused Ensure™ test systems to many tier-1 suppliers. We often receive requests for off-highway oil pump applications. Recently, we underwent a project focused on durability testing.

All sub-components were designed to maximize reliability while minimizing cost and maintenance. Examples of this include protective capillary tubes on pressure sensors to shield them from high temperatures and pulsations.

The data acquisition interface was devised to be modular and scalable by adding spare I/O channels, such that the client would easily be able to add and configure additional sensors. The software suite was designed to allow the manufacturer to collect data in a simple and straightforward way, with the highest degree of reliability.

Features included:

  • predefined pump test profiles and sequences

  • custom test profiles to measure temperature, speed, pressure, etc.

  • custom sampling frequency

  • sensors for intelligent monitoring to prevent test machine damage

  • automatic email or pager options in case of system alarms

  • extractable reports from automatically generated test data

Mechanical Engine Oil Pump Testing   A test platform devoted to thoroughly capturing and understanding the failure modes of mechanical oil pumps ensures the dependability your customers value most.    Click here   to learn more.

Mechanical Engine Oil Pump Testing

A test platform devoted to thoroughly capturing and understanding the failure modes of mechanical oil pumps ensures the dependability your customers value most.

Click here to learn more.

After selecting the type of durability test to be run, such as constant speed, ramping profiles, cyclic acceleration, etc., the client was able to specify the total time duration or number of repetitions for each test.

Learn more about pump testing.

Our comprehensive presentation explains how we developed and delivered this solution to our client on-time, on target and on budget. The included data sheet will help give a sense to the specific solution implemented. Get both by clicking the button below!

OIL AERATION HURTS EFFICIENCY

OIL AERATION HURTS EFFICIENCY

Many OEMs are battling to improve vehicle durability, increase efficiency and reduce noise, but are struggling to find the answers. Unfortunately, many of the recent design trend are forcing higher aeration levels, and far too many OEMs are unaware. 

In the pursuit of greater efficiency, many OEMs are making design decisions that may amplify the effects of oil aeration. Air bubbles may seem benign, but they can detrimentally affect the performance and durability of engines, drivelines and hydraulic equipment.  

Efficient Temperature Cycling for Fluid Components

Electric coolant pump for automotive application.

Electric coolant pump for automotive application.

Increasing electrification of traditionally mechanically-driven components in the automotive industry has been visible in many segments of the vehicle subsystems, such as lubrication circuits and cooling circuits. Some of the components include electric oil pumps, electric water pumps, electric coolant valves, etc. As the parts evolve from purely mechanical components to a combination of mechanical and electronic hardware, the methods used to validate the components have also evolved. 

To test these components, the equipment needs to be able to simulate both environmental (air) temperature and humidity, as well as the fluid temperature. In pressurized coolant circuits, temperatures as high as +135°C are required, whereas in lubrication systems oil temperatures as high as +150°C need to be achieved. On the low end, temperatures as low as -40°C are required for both. Rates of change vary depending on the required tests, but can be anywhere between 1-15°C/min average.

Many of the test standards used today for validating the durability of the electrified automotive components originated from the electronics industry. In the electronics industry, the traditional approach has been the use of thermal chambers to create the desired ambient conditions for temperature and humidity. To a large extent, the industry so far has adopted the use of this equipment as well and tried to leverage its performance capabilities in the standard form. 

Ensure™     designed and built as a global tool, can be powered by 380-460VAC 50/60Hz power.

Ensure™ designed and built as a global tool, can be powered by 380-460VAC 50/60Hz power.

One of the challenges with transferring this test approach to automotive components is the fact that these parts make use of fluids as well. This means that in addition to validating the device under test, supporting systems are needed to recreate the conditions that these parts would see in the field (system pressure, circuit resistance, etc). As thermal chambers are designed to be able to regulate the temperature of air inside a specific volume, the introduction of any additional hardware adds two main layers of complexity: the added thermal inertia that has to be heated/cooled, and the low heat exchange power due to air acting as a heat transfer medium. 

Horai™     Technology conditioning oil to -40°C

Horai™ Technology conditioning oil to -40°C

The first challenge affects the chamber’s ability to meet the advertised rates of change. The second challenge affects the ability to control the fluid temperature at a rate that is comparable to the air temperature. 

The second challenge has resulted in the use of low-temperature mechanical refrigeration chillers. These devices are used in tandem with thermal chambers, but are used specifically for being able to control the temperature of the fluid. This equipment usually carries a very high capital cost, as well as a long lead time. 

Control and data acquisition systems are needed to control these units, as well as interfacing with the device under test, which increases the complexity. There is no guarantee that when all these components are put together that they will operate properly as a system.

 
Test systems with         Horai   ™    technology frees up floor space, with its reduced footprint.

Test systems with Horai technology frees up floor space, with its reduced footprint.

 

ATA Horai technology was developed to solve these challenges, by optimizing the subsystems required to deliver the test results. Ensure™ is designed to meet the test standards for components in the most efficient way possible.

Horai’s technology is built into our Ensure test systems. The centralized control eliminates the need for interfaces with each individual piece of equipment, and their dedicated controllers. This reduces control software effort and complexity. It eliminates redundancy and additional overhead of multiple electrical panels, frame structures, protective enclosures, etc. 

Fluid+conditioning+module.jpeg

Horai™ is a technology that enables automotive Tier-1 suppliers and OEMs to efficiently validate and verify new electrification components for lubrication or thermal management without the costs, delays and misses that come from a custom engineered or home-brewed test system. It is a dedicated solution, rather than a combination of generic tools.

As a result, ATA’s solution has yielded the following benefits: 

  • More effective fluid temperature ramp rate, enabling faster testing

  • More devices-under-test in the machine, enabling more throughput

  • Reduced footprint with the integrated solution, allows for better use of test facility floorspace

  • Service and support is centralized, as there is no need to reach out to multiple manufacturers based on which part of the system is not behaving as expected.

  • Same system for heating and cooling; no risk to damaging mechanical refrigeration hardware when heating.

Transmission Oil Pump Production Audit Testing

Transmission Oil Pump Production Audit Testing

Efficient test machine design entails not only supporting current client needs and products, but also any similar models, with the flexibility to adapt to next generation designs as well. Such was the case when we were approached by a leading producer of engine and transmission oil pumps for the automotive sector.

Pump Testing Methodologies

Pump Testing Methodologies

Whether developing a new hydraulic pump design that has to closely match predefined specifications, or verifying the functionality of a production unit, an accurate and reliable test system is needed to confirm the functional parameters of those pumps.